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Diseases as network perturbations
Antonio del Sol1, Rudi Balling1, Lee Hood2 and David Galas2
The tremendous amount of the data obtained from the study of

complex biological systems changes our view on the

pathogenesis of human diseases. Instead of looking at

individual components of biological processes, we focus our

attention more on the interaction and dynamics of biological

systems. A network representation and analysis of the

physiology and pathophysiology of biological systems is an

effective way to study their complex behavior. Specific

perturbations can trigger cascades of failures, which lead to the

malfunctioning of cellular networks and as a result to the

development of specific diseases. In this review we discuss

recent developments in the field of disease network analysis

and highlight some of the topics and views that we think are

important for understanding network-based disease

mechanisms.
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Introduction—the systems approach to
human disease in the context of P4-medicine
Systems biology is changing the future of medicine,

which will become preventive, predictive, personalized

and participative, a paradigm called P4-medicine [1]. One

of the major drivers of this transformation will be the

availability of low cost high throughput sequencing in

combination with the development of high throughput

multiple parameter molecular measurements — of RNA,

proteins and metabolites — high resolution imaging and

data processing and data storage beyond the petabyte

range. Equally important however will be the realization

that we need a new conceptual framework to describe and

model diseases in their complexity. Such a framework

needs to take into account the highly complex multi-

factorial nature of the causes of disease pathogenesis.

These factors include genetic variation, epigenetic modi-

fications and many genome–environment interactions.
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Looking at diseases as ‘perturbations of networks’ can

provide such a framework and help to translate insights

from systems biology into the practicalities of personal-

ized and preventive medicine.

Genotype–environment interactions are highly nonlinear.

Intuition as a tool for predicting the behavior of a system

upon external perturbation fails in most cases and we

contend that we need to apply the more formalized

language of graph theory, vector algebra and nonlinear

dynamics to properly make predictions. A graphical

representation and mathematical description of diseases

in their perturbed networks builds upon the advances

made in other disciplines, such as engineering, physics

and mathematics. Looking at diseases as a perturbation of

networks can also serve as a conceptual basis to identify

new drug targets and new innovative therapeutic strat-

egies. Here we briefly review recent developments in the

field of disease network analysis and highlight some of the

topics that we feel will stay at center stage in the coming

years.

Diseases can be viewed as specific types of
network perturbation
Cells employ regulatory and signaling pathways that

connect a large number of constituent parts of the system,

like proteins, DNA, RNA, and metabolites, to coordinate

multiple functions. One of the roles of this complexity is

to permit cells to adapt to changing conditions. In order to

understand the mechanisms underlying biological pro-

cesses, we need to know not only the identity of the

components that constitute the biological system, but also

the ways they interact with each other. A network repres-

entation of these systems has been proven to be a power-

ful framework for their study. The analysis of the

topology and dynamics of these biological network

representations is thus essential to understand their com-

plex and adaptive behavior.

Perturbation of cellular systems

Cells are constantly exposed to multiple simultaneous

input cues from the environment, such as temperature

and pH changes, external agents inducing DNA damage,

and chemicals, which can modify proteins in posttransla-

tional modifications. Cells often have to cope with rapid

changes in the concentration of specific proteins and

RNAs, the rate of enzyme catalysis, chromatin confor-

mation, and also the allosteric regulation and interactions

between proteins, transcription factors or the DNA-

binding of transcription factors [2,3]. In addition, noise

in the transcription and translation mechanisms lead to

internal fluctuations in gene expression, protein and
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metabolite concentrations [4�,5,6]. Consequently, the

required levels of mRNA, proteins and metabolites for

maintaining the cellular function need to be re-estab-

lished with time or alternatively, changes in cellular

behavior, such as proliferation, apoptosis, differentiation

into mature cell types, and activation of differentiated

cells, need to reflect changes in these informational

molecules.

This fact is nicely illustrated by Kauffman’s model of the

attractor landscape of a gene regulatory network [7,8]. In

this model, a gene expression profile reflects a state of a

gene regulatory network, which evolves depending on the

network’s wiring towards an equilibrium state that is

determined by the regulatory interactions. There are

an enormous number of possible configurations in the

gene expression state space. Nevertheless, cell fates

(distinct functional phenotypic states of cells) correspond

to these stable equilibrium states (attractor states) of the

dynamic system on the basis of an underlying gene

regulatory network. The process of changing functional

phenotypic states then corresponds to trajectories in the

gene expression state space.

The stability of these high-dimensional attractors guar-

antees that changes in the levels of expression and

activation of interacting proteins will not modify the cell

phenotype, but be constrained around the attractor. On

the other hand, regulatory signals or stochastic fluctu-

ations inducing changes in expression of multiple genes

in a combinatorial manner would be able to produce an

attractor switch. The existence of attractor states, deter-

mined by thousands of genes and their connection to cell

fates has been experimentally verified [6,9,10]. The con-

vergence of different trajectories in the state space to

attractor states, which correspond to differentiated cell

states, as well as the reversion back to attractor states after

local perturbations, have been observed by monitoring

gene expression changes in different multi-potent cell

lines.

Mathematical models have been proposed for the analysis

of cell signaling networks determining cell fate decisions

[11,12]. These models, which rely on a logical formaliza-

tion of known molecular interactions, are able to describe

cross talk between these signaling pathways and to allow

monitoring of dynamical effects resulting from pertur-

bations of the system.

Network perturbations leading to human diseases

Despite the robustness of cellular networks in main-

taining their performance against a wide range of per-

turbations and noise sources and levels, these networks

can exhibit an extreme fragility towards certain (even

seemingly much smaller) specific perturbations [13].

This tradeoff between robustness against a large num-

ber of perturbations and fragility against some other
www.sciencedirect.com
perturbations can explain the formation of diseases

[14,15]. For example, although many mutations have

no effect on a specific phenotype, mutations of certain

genes or a particular combination of them can trigger

cascades of failures, which lead to the gene regulatory

network malfunctioning and therefore to the appear-

ance of disease phenotypes [13,16] (Figure 1). Indeed,

several human diseases, such as Huntington’s disease,

Cystic Fibrosis, and Sickle cell anemia are monogenic,

resulting from the mutation of one gene; whereas in

many cases diseases such as cancer, diabetes and Alz-

heimer’s disease are multi-genic, caused by mutations

in multiple genes. It is also clear that the single causal

gene diseases are modified in their phenotypes by

additional genes, sometimes called modifier genes,

whose identities can shed light on the disease networks.

In this sense there are very few, if any, truly single-gene

diseases. In addition, environmental effects (some of

them causing epigenetic modifications) can also impact

interactions among genes, as toxins present in the

environment may further degrade already weakened

pathways, or stimulate them to transition into patho-

logical states.

Effects of disease-related perturbations on the gene

regulatory network landscape

Transcription factors exist as a dynamic population

of proteins in different structural and dynamics states,

exhibiting different DNA-binding affinities for DNA

response elements [17,18]. Consequently, it is reasonable

to assume that different gene regulatory network states,

characterized by different sets of transcription factor

conformations, coexist even in an apparently uniform cell

population. Since many transcription factors and proteins

that bind in a functionally modifying fashion to transcrip-

tion factors are allosteric proteins, mutations modifi-

cations and environmental changes may act as allosteric

effectors, leading to a redistribution of the transcription

factor population, and therefore inducing a redistribution

of gene regulatory network states in the cell population

(Figure 1). For this reason single cell analyses will be

important in research of the transitions between cell

states.

This particular view leads us to an important hypothesis:

some of these gene regulatory network states could

correspond to disease stable states, pre-existing in the

gene regulatory network landscape of healthy cell popu-

lations. This idea has been proposed in an updated view

of the original Kauffman’s model, where the concept of

cancer attractors was introduced [19�]. Cancer attractors

define stable gene expression programs associated to

specific gene regulatory network states that implement

the tumor cell phenotype and are already present in the

healthy genome. However, these cancer attractors are

normally not accessible—rarely attained by normal cells.

Specific genetic mutations, environmental insults and/or
Current Opinion in Biotechnology 2010, 21:566–571
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Figure 1

Mutation leading to the gene regulatory network malfunctioning. In this representation of a gene regulatory network proteins are depicted as ovals and

genes as rectangles, correspondingly. Thick arrows indicate genes encoding for proteins, whereas thin arrows show transcription factors acting on

genes. Dashed arrows show affected steps in the gene regulatory network. (a) Schematic illustration of a healthy-cell gene regulatory network. (b) A

mutation in gene 4 triggers a conformational change in transcription factor 1, which impairs its binding to gene 1, and consequently leads to a cascade

of failures yielding to a malfunctioning of the gene regulatory network associated to a disease.
epigenetic perturbations might modify the gene expres-

sion state landscape allowing cells to enter these unoc-

cupied attractors. In addition, new cancer attractors that

are normally unstable states may also appear.

Although, in most cases a complete understanding of

how failure of individual network components leads to

network malfunctioning and consequently to disease

remains a significant challenge, a systems approach to

study a number of diseases has given insights into the

disease mechanisms. This challenge probably constitutes

the frontier of systems biomedicine.

Examples of systems level approaches to
study diseases
A number of experimental and theoretical systems level

approaches have been carried out in the last few years

aiming at dissecting anomalies in cellular networks associ-

ated with different diseases [20–23,24�,25–29]. These stu-

dies were based on the analysis of the topology and

dynamics of disease-perturbed networks. Recently, the

dynamic structure of the human protein interaction net-

work was examined to predict breast cancer outcomes [20].

The computational removal of nodes from the protein

interaction network identified protein interaction hubs

critical for the network connectivity. Two types of hubs
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were classified—inter-modular and intra-modular hubs,

which display low or high correlation of co-expression with

their interaction partners, respectively. Data show that

inter-modular hubs, which tend to be more critical for

network’s connectivity, were associated with cancer phe-

notypes more frequently than intra-modular hubs. Indeed,

gene expression levels of these hubs were strongly corre-

lated with the expression of their interacting partners in

tumors from surviving patients, but not well correlated

with their expression in tumors from poor-outcome

patients. Another study based on a comparison of micro-

RNA regulatory networks (inferred networks, based on

data and predicted interactions) in normal tissues and

different cancer tissues (51 solid tumors and leukemias)

revealed their differences in hubs (the most connected

miRNAs) [21]. Furthermore, complete miRNA networks

characterized normal tissues, whereas cancer tissues were

represented by disconnected, disjointed sub-networks,

which allowed the identification of important miRNA

cliques in cancer.

A large-scale study relying on the construction of a func-

tional protein interaction network by using different data

sources has been recently performed to analyze two data

sets from genome-wide glioblastoma multiforme (GBM)

[22]. After mapping cancer candidate genes obtained
www.sciencedirect.com
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from different GBM samples onto the network, it was

found that these genes cluster together in modules

enriched in known oncogenes, tumor suppressors and

genes involved in signal transduction, suggesting that

there is a core network in GBM tumorigenesis.

A combined study of the human metabolic network

topology and the skeletal muscle gene expression data-

sets has been used to identify signatures of type 2

diabetes [23]. Transcription factors and metabolites that

represent potential drug targets and clinical diagnostics

for type 2 diabetes were determined. In addition to

metabolites from the TCA cycle, oxidative phosphoryl-

ation and lipid pathways, a perturbation analysis of the

cellular metabolic network identified highly connected

metabolites ATP and NAD+ as contributors for the wide-

spread gene expression changes observed in type 2 dia-

betes.

A comprehensive study of the initiation and progression

of murine prion disease, a degenerative neurological

disorder, has revealed several striking observations

[24�]. This study generated dynamical subtractive brain

transcriptome data (disease minus normal) to identify the

differentially expressed genes across 10 time points

during disease progression in eight different inbred

strain/prion strain combinations. These data were inte-

grated into four protein interaction networks that had

been delineated by histopathological data—prion repli-

cation, glial activation, degeneration of axons and den-

drites and neural apoptosis. In addition several other

types of data gathered at each of these time points were

integrated with the transcriptome and protein network

interaction data in one inbred strain/prion strain combi-

nation—sagittal brain sections stained for infectious prion

protein, histopathological analyses and clinical signs. The

multiple inbred strain/prion strain combinations allow us

to reduce the signal to noise in the transcriptome data by

subtractive analyses of various biological features from

7400 to 333 genes that appeared to encode the essence of

the prion disease process. Several other observations were

made: first, two thirds of the 333 gene fell into the four

networks described above, whereas the remaining one-

third encoded six additional networks heretofore not

known to be a part of the disease process and second,

the four major networks were disease-perturbed in

sequential order — prion replication, glial activation,

degeneration of axons and dendrites and neural apoptosis

— and this has important implications both for diagnostic

and therapeutic strategies.

Interrelation between different diseases
Most of the current systems level approaches to study

diseases focus on a single disease, relying on network-

based methods to gain insights on the molecules and

pathways relevant for the specific disease. A conceptually

different approach has been recently proposed to study
www.sciencedirect.com
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diseases, leading, for example, to comorbidity, instead

of focusing the attention on one disease [30]. The study

was based on the generation of two complementary net-

works: The first network is a human disease network

(HDN) with nodes representing disorders that are linked

through edges representing common implicated genes.

The second network is a disease gene network (DGN)

with nodes corresponding to disease genes and the edges

formed by the diseases that result from a perturbation of

the linked node genes.

This provided a theoretic framework to connect all

known phenotypes and disease gene associations. This

approach can lead to a revelation of some of the common

genetic origins of diseases. As a result of this study the

authors observed a gene expression correlation between

genes associated with similar disorders, indicating the

existence of disease-specific functional modules. It was

interesting that they also found that the majority of

human disease-related genes are nonessential and do

not encode hub proteins. A selection-based model was

proposed to explain differences between essential and

disease genes. In a different study by combining infor-

mation on cellular interactions, disease gene relation-

ships, and population-level Medicare data, correlations

between disease comorbidity and the structure of cellular

networks were found [31].

Despite these efforts to understand the interrelations

between different diseases based on cellular network

characteristics, and in order to understand the geno-

type–phenotype relationships in diseases, the modeling

of disease-causing mutation effects on molecular net-

works is required. Different mutations in the same gene

can produce distinct functional mutants, which may dif-

ferently affect cellular networks. This point has been

addressed in a systematic analysis of how perturbations

of interactome networks may differ between complete

loss of gene product (node removal) or loss of specific

molecular interactions (edge removal) on a large dataset

of known mutations in Mendelian disorders [32�]. Map-

ping disease-causing mutations on available three-dimen-

sional structures of disease proteins provided

complementary information on perturbations of physical

protein–protein interactions leading to changes in the

interactome network.

Systems level approach to drug design
Systems level approaches can yield insights into disease-

related perturbations of cellular networks [33–35]. In

order to attack the understanding of truly complex dis-

eases, such as cancer, Parkinson’s disease, and diabetes,

we need to reconsider our strategies for drug design and

selection of molecular targets for treatment. The devel-

opment of a multi-target drug strategy based on a network

analysis, if it can predict network responses, should give
Current Opinion in Biotechnology 2010, 21:566–571
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much better results than the traditional single-target

strategy [36�,37,38]. A network approach should provide

the framework for designing combinatorial therapies that

target less essential nodes to increase synergetic perform-

ance and decrease side effects. Furthermore, considering

complex diseases as robust systems exhibiting neverthe-

less points of fragility may provide insights for the de-

velopment of new drugs [39]. Nevertheless, for the design

of appropriate drug combinations and multi-target drugs,

we need to develop novel theoretical and experimental

approaches to explore the dynamic complexity of cellular

networks after multiple perturbations [36�,40].

The challenges
The concept of disease states as perturbations of cellular

networks is gaining recognition as a fruitful conceptual

framework for developing new preventive and thera-

peutic strategies. One of the major drivers in the past

and in the foreseeable future is the enhanced ability for

high throughput analysis of genomes and molecular phe-

notype analysis. There is a major need for more sophis-

ticated automatation and miniaturization technologies to

be used in this effort.

Equally challenging will be the dissection of the internal

characteristics, such as the topology and dynamics of the

cellular networks involved. The majority of biological

perturbation studies thus far have employed single end-

point studies, to compare changes in physiological, mol-

ecular or cellular parameters in healthy and/or disease,

including human patients, animal models and in vitro
culture systems. It will be essential to fully dissect the

state changes to have time series analyses. Otherwise we

will not be able to see the complex dynamics of regulatory

interactions that occur during disease pathogenesis. Auto-

mated time-lapse imaging cinematography and other

imaging techniques will greatly facilitate this.

A major problem for the future will be the integration of the

different networks, for example, regulatory, protein–
protein interactions, proteomic and metabolic networks.

The time-scales underlying these networks operate are in

many cases very different and we do not have complete

datasets, and good bioinformatics and computational tools

available for this integration. Ideally, an integrated network

approach would consider full cellular network models,

which describe the dynamics of interactions among differ-

ent types of molecular nodes (proteins, RNAs, genes, and

other molecules), characterized by quantitative variables

representing the states of these molecules (concentration,

activity, expression, etc.). The challenge of characterizing

and understanding ‘emergent properties’ of these systems

will be at the heart of future biological research.

An enormous challenge for the future is dealing with

the signal to noise issues that arise from all high through-

put data sets. This will require the development of
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mathematical approaches to handle the noise—but per-

haps more important will be the deployment of deep

biological understanding of the relevant systems. For

example, in the prion example given above about eight

subtractive analyses were employed among the eight

inbred strain/prion strain combinations to subtract signal

for other types of biology from that of the core prion

response (21a). For example, for each of the 10 time

points the differentially expressed genes (diseased minus

normal controls) changes seen in the congenic mice for

the double knockout of the prion gene (animals that never

get the disease) were subtracted from the 7400 differen-

tially expressed initially observed. This signal to noise is a

critical approach and obviously requires a very deep un-

derstanding of the biology—and it will in other examples

be a critical component of identifying the core of genes

responsible for specific diseases.

The analysis of disease networks requires the pertur-

bation and monitoring not only at a cell population,

but also at the single cell level. Stochastic effects, intrinsic

or extrinsic noise or the switch from one attractor state to

another can often be derived only at the single cell level.

Microfluidics, flow sorting and other technologies will

greatly facilitate such single cell studies.

We also need new mathematical tools required for a

successful modeling and simulation of diseases. Maybe

the desire to fully understand biological networks and

predict their behavior after specific perturbations might

trigger the development of new areas of mathematics,

similar to what we witnessed in other disciplines. A

detailed description of what we know about such needs

is beyond the scope of this article, but it is clear that there

are growing needs for new methods.

We need to devise efficient new tools to reliably link the

tremendous genetic variation that we see among individ-

uals with individual disease prevalence and comorbidity.

The study of cellular networks underlying the link of

genetic and environmental information will be at the

forefront of this attempt to create the new systems

biomedicine.
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