
Most cellular components exert their functions through 
interactions with other cellular components, which can 
be located either in the same cell or across cells, and 
even across organs. In humans, the potential complexity 
of the resulting network — the human interactome — is 
daunting: with ~25,000 protein-coding genes, ~1,000 
metabolites and an undefined number of distinct  
proteins1 and functional RNA molecules, the number of 
cellular components that serve as the nodes of the inter-
actome easily exceeds 100,000. The number of function-
ally relevant interactions between the components of 
this network, representing the links of the interactome, 
is expected to be much larger2.

This inter- and intracellular interconnectivity implies 
that the impact of a specific genetic abnormality is not 
restricted to the activity of the gene product that carries 
it, but can spread along the links of the network and 
alter the activity of gene products that otherwise carry 
no defects. Therefore, an understanding of a gene’s net-
work context is essential in determining the phenotypic 
impact of defects that affect it3,4. Following on from this 
principle, a key hypothesis underlying this Review is 
that a disease phenotype is rarely a consequence of 
an abnormality in a single effector gene product, but 
reflects various pathobiological processes that inter-
act in a complex network. A corollary of this widely 
held hypothesis is that the interdependencies among 
a cell’s molecular components lead to deep functional, 
molecular and causal relationships among apparently  
distinct phenotypes.

Network-based approaches to human disease have 
multiple potential biological and clinical applications. A 
better understanding of the effects of cellular intercon-
nectedness on disease progression may lead to the iden-
tification of disease genes and disease pathways, which, 
in turn, may offer better targets for drug development. 
These advances may also lead to better and more accurate 
biomarkers to monitor the functional integrity of net-
works that are perturbed by diseases as well as to better  
disease classification. Here we present an overview of 
the organizing principles that govern cellular networks 
and the implications of these principles for understand-
ing disease. These principles and the tools and method-
ologies that are derived from them are facilitating the 
emergence of a body of knowledge that is increasingly 
referred to as network medicine5–7.

The human interactome
Although much of our understanding of cellular net-
works is derived from model organisms, the past dec-
ade has seen an exceptional growth in human-specific 
molecular interaction data8. Most attention has been 
directed towards molecular networks, including protein 
interaction networks, whose nodes are proteins that are 
linked to each other by physical (binding) interactions9,10; 
metabolic networks, whose nodes are metabolites that 
are linked if they participate in the same biochemi-
cal reactions11–13; regulatory networks, whose directed 
links represent either regulatory relationships between 
a transcription factor and a gene14, or post-translational 
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Abstract | Given the functional interdependencies between the molecular components in a 
human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects 
the perturbations of the complex intracellular and intercellular network that links tissue  
and organ systems. The emerging tools of network medicine offer a platform to explore 
systematically not only the molecular complexity of a particular disease, leading to the 
identification of disease modules and pathways, but also the molecular relationships among 
apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying 
new disease genes, for uncovering the biological significance of disease-associated  
mutations identified by genome-wide association studies and full-genome sequencing, and 
for identifying drug targets and biomarkers for complex diseases.

R E V I E W S

56 | JANUARY 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

mailto:alb@neu.edu


Node (or vertex)
A system component that,  
by interacting with other 
components, forms a network. 
In biological networks, nodes 
can denote proteins, genes, 
metabolites, RNA molecules or 
even diseases and phenotypes.

modifications, such as those between a kinase and its 
substrates15; and RNA networks, which capture the role 
of interactions between regulatory RNAs, such as small 
non-coding microRNAs (miRNAs)16 and small interfer-
ing RNAs (siRNAs)17, and DNA in regulating gene expres-
sion. In parallel, an increasing number of studies rely on 
phenotypic networks, including co-expression networks, 
in which genes with similar co-expression patterns  

are linked18; and genetic networks, in which two genes are  
linked if the phenotype of a double mutant differs 
from the expected phenotype of two single mutants19,20. 
Typically, the links of a phenotypic network reflect some 
of the pathways in the underlying molecular networks. 
Finally, both the nodes and the interactions discussed 
above need to be evaluated in the context of tissue  
specificity21–23, as they may exert a functional role in the 
context of only selected tissues.

The first step in exploring the interplay between net-
works and human diseases is to assess how comprehensive 
and accurate the current molecular and phenotypic net-
work maps are for humans (BOX 1). The past few years have 
witnessed systematic efforts to increase the coverage of 
human interactome maps, to estimate the interactome size 
and to correct for known biases2,24,25. Still, human interac-
tome maps remain incomplete and noisy, a fact that needs 
to be taken into account when using them to study dis-
eases. Furthermore, much of the current work, and hence 
this Review, focuses on intracellular networks, ignoring, 
owing to lack of systematic data, the molecular networks 
that connect cells, tissues and organ systems4,26.

Properties of disease networks
Network medicine relies on a series of advances in net-
work theory27–32 that have provided insights into the 
properties of biological networks more generally. These 
studies have indicated that networks operating in biologi-
cal, technological or social systems are not random, but 
are characterized by a core set of organizing principles 
(BOX 2). Understanding diseases in the context of these 
network principles allows us to address some fundamen-
tal properties of the genes that are involved in disease. 
Indeed, only about 10% of human genes have a known 
disease association33 (FIG. 1a); thus, do disease genes have 
unique, quantifiable characteristics that distinguish them 
from other genes? From a network perspective, this 
question translates as follows: are disease genes placed 
randomly on the interactome, or are there detectable 
correlations between their location and their network 
topology? The search for answers has led to a series of 
hypotheses that tie the interactome to human diseases. 
These are summarized in BOX 3, and in the remainder  
of this article we will discuss the validity and applications of  
those hypotheses that have received the most attention.

Location of disease genes within networks. An unex-
pected property of biological networks is the emergence 
of a few highly connected nodes, often called hubs (BOX 2), 
suggesting that the proteins represented by these hubs 
must have a special biological role. Indeed, evidence from 
model organisms indicates that hub proteins tend to be 
encoded by essential genes34, and that genes encoding 
hubs are older and evolve more slowly than genes encod-
ing non-hub proteins35–37. The deletion of genes encoding 
hubs also leads to a larger number of phenotypic outcomes 
than for other genes25. Although the strength of evidence 
for some of these effects is still debated25,38, by virtue of the 
many interactions it has, the absence of a hub would be 
expected to affect many more other proteins than would 
the absence of a non-hub protein.

 Box 1 | Biological network maps and interaction resources

Although the bulk of research on biological networks has focused on Escherichia coli 
and Saccharomyces cerevisiae, following the Human Genome Project the amount  
of data pertaining to networks in the human cells exceeds in richness and diversity the 
data that are available for model organisms. In the following, we briefly discuss  
the most studied network maps and their limitations, but we remind the reader to 
exercise caution as we are describing a rapidly changing landscape. The links and 
references to pertinent databases are available online.

Protein–protein interaction networks
The past 5 years has seen significant efforts towards obtaining comprehensive 
protein interaction maps. High-throughput yeast two-hybrid maps for humans  
have been generated by several groups2,9,10,122, yielding more than 7,000 binary 
interactions. The immunoprecipitation and high-throughput mass spectrometry 
technique, which identifies co-complexes, is now being applied to humans as 
well123. There have also been major efforts to curate the interactions that have been 
validated individually in the literature into databases124 such as the Münich 
Information Center for Protein Sequence (MIPS) protein interaction database, the 
Biomolecular Interaction Network Database (BIND), the Database of Interacting 
Proteins (DIP), the Molecular Interaction database (MINT), and the protein 
Interaction database (IntAct). More recent protein–protein interaction curation 
efforts, including the Biological General Repository for Interaction Datasets 
(BioGRID) and the Human Protein Reference Database (HPRD), have attempted 
larger-scale curation of data. Additionally, the STRING database contains known and 
predicted protein–protein interactions. Despite these extensive curation efforts, the 
existing maps are considered incomplete2, and the literature-based data sets, 
although richer in interactions, are prone to investigative biases25 as they contain 
more interactions for the more explored disease proteins41.

Metabolic networks
The metabolic network maps are probably the most comprehensive of all biological 
networks. Databases such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and the Biochemical Genetic and Genomics knowledgebase (BIGG) contain 
the metabolic network of a wide range of species. Recently, Duarte et al.13 published 
a comprehensive literature-based genome-scale metabolic reconstruction of human 
metabolism, with 2,766 metabolites and 3,311 metabolic and transport reactions. An 
independent manual construction by Ma et al.125 contains nearly 3,000 metabolic 
reactions, organized into about 70 human-specific metabolic pathways.

Regulatory networks
Mapping of the human regulatory network is in its infancy, making this network perhaps 
the most incomplete among all biological networks. Data generated by experimental 
techniques, such as chromatin immunoprecipitation (ChIP) followed by microarrays 
(ChIP–chip) and ChIP followed by sequencing (ChIP–seq), have started to be collected 
in databases such as the Universal Protein Binding Microarray Resource for 
Oligonucleotide Binding Evaluation (UniPROBE) and JASPAR. Literature-curated and 
predicted protein–DNA interactions have been compiled in various databases, such as 
TRANSFAC and the B-cell interactome (BCI). Human post-translational modifications 
can be found in databases such as Phospho.ELM, PhosphoSite, phosphorylation site 
database (PHOSIDA), NetPhorest and the CBS prediction database.

RNA networks
RNA networks can refer to networks containing RNA–RNA or RNA–DNA interactions. 
Recently, with the increased understanding of microRNAs’ role in disease94, 
microRNA–gene networks have been constructed using predicted microRNA targets 
available in databases such as TargetScan, PicTar, microRNA, miRBase and miRDB. 
The number of experimentally supported targets is also increasing, and they are now 
compiled in databases such as TarBase and miRecords.
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Link (or edge)
A link represents the 
interactions between the nodes 
of a network. In biological 
systems, interactions can 
correspond to protein–protein 
binding interactions or 
metabolic coupling, or they 
may represent connections 
between diseases based  
on a common genetic  
origin or shared phenotypic 
characteristics.

This assumption has led to the hypothesis that, in 
humans, hubs should typically be associated with dis-
ease genes. Some studies support this hypothesis, such 
as the finding that the protein products of genes that are 
upregulated in squamous cell carcinoma of the lung tend 
to have a higher degree than do proteins with levels that 
are unaffected39. In a separate study, 346 proteins that are 
implicated in cancer were found to have, on average, twice 
as many interaction partners as did non-cancer proteins40. 
Moving beyond cancer, one study41 found that disease 
proteins in the OMIM Morbid Map33 have more protein–
protein interactions than do non-disease proteins.

However, not all essential genes are disease genes in 
humans. Mutations in genes that are essential in early 
development cannot propagate in the population, as 
functional changes in them often lead to first-trimester 
spontaneous abortions (embryonic lethality); by con-
trast, individuals can tolerate disease-causing mutations 
for much longer, often past their reproductive age. This 
suggests that most disease genes in humans will in fact 
not be essential genes42,43. So, what is the relationship 
among essential genes, hubs and genes that cause disease 
in humans? Goh et al.42 found that essential genes that 
are not associated with disease show a strong tendency 
to be associated with hubs and are expressed in multiple 
tissues — that is, they tend to be located at the func-
tional centre of the interactome (FIG. 1). However, non-
essential disease genes do not show a tendency to encode 
hubs, and they tend to be tissue specific and located at 
the functional periphery of the interactome (FIG. 1b). In 
summary, in human cells it is the essential genes, and not 
the disease genes, that encode hubs.

Local clustering of disease genes: disease modules. If a 
gene or molecule is involved in a specific biochemical  
process or disease, its direct interactors might also be 
suspected to have some role in the same biochemical 
process44. In line with this ‘local’ hypothesis (BOX 3), 
proteins that are involved in the same disease show a 
high propensity to interact with each other42,45. For 
example, one group observed 290 physical interac-
tions between the products of genes associated with the 
same disorder, representing a tenfold increase relative 
to random expectation42. Two other studies found that 
genes that are linked to diseases with similar pheno-
types have a significantly increased tendency to interact 
directly with each other41,46. These observations indicate 
that, if a few disease components are identified, other  
disease-related components are likely to be found in their 
network-based vicinity. That is, we expect that each dis-
ease can be linked to a well-defined neighbourhood of  
the interactome, often referred to as a ‘disease module’.

As we try to understand the network-based position 
of disease genes, we need to distinguish among three 
distinct phenomena (FIG. 2). A ‘topological module’ rep-
resents a locally dense neighbourhood in a network, 
such that nodes have a higher tendency to link to nodes 
within the same local neighbourhood than to nodes out-
side it. Such modules can be identified using network 
clustering algorithms that are blind to the function of 
individual nodes47–51. By contrast, a ‘functional mod-
ule’ represents the aggregation of nodes of similar or 
related function in the same network neighbourhood,  
where function captures the role of a gene in defining 
detectable phenotypes. Finally, a ‘disease module’ rep-
resents a group of network components that together 
contribute to a cellular function and disruption of which 
results in a particular disease phenotype.

In the biological literature, there is a tacit assump-
tion that these three concepts are interrelated: cellular 
components that form a topological module have closely 
related functions, thus they also correspond to a func-
tional module, and a disease is a result of the breakdown 

 Box 2 | Elements of network theory

An important realization of the past decade is that networks in natural, technological 
and social systems are not random, but follow a series of basic organizing principles 
in their structure and evolution that distinguish them from randomly linked 
networks. In the following, we summarize the aspects of network theory that pertain 
to biological networks. For a more detailed exposition, see REFS 27–32. Although 
these principles were found to apply to a range of networks, in the context of this 
Review, they refer to biological networks, seen as nodes (for example, proteins, 
metabolites or diseases) connected by links (for example, protein–protein 
interactions, metabolic reactions or shared genes), as discussed throughout.

Modules
Most networks show a high degree of clustering, implying the existence of 
topological modules that represent highly interlinked local regions in the network. 
Although the identification of such modules can be computationally challenging, a 
wide array of network-clustering tools have emerged over the past few years47–50.

Degree distribution and hubs
In a random network, most nodes have approximately the same number of links, and 
highly connected nodes (hubs) are rare. The fraction of links with a given degree, 
called the degree distribution, follows the well-known Poisson distribution. By 
contrast, many real networks, including human protein–protein interaction and 
metabolic networks, are scale free126, which means that the degree distribution has a 
power-law tail; that is, the degree distribution P(k), with degree k, follows P(k) ~ k– , 
where  is called the degree exponent. The most noticeable consequence of this 
property is the presence of a few highly connected hubs that hold the whole network 
together34. Researchers often refer to the 20% of nodes in a network with the highest 
degree as ‘hubs’, but this definition is arbitrary, as the scale-free property implies that 
these networks do not have an intrinsic ‘scale’ — that is, an inherent threshold 
beyond which nodes are hubs. The biological role and dynamical behaviour of hubs 
allowed their classification into ‘party’ hubs, which function inside modules and 
coordinate specific cellular processes, and ‘date’ hubs, which link together rather 
different processes and organize the interactome66,127.

Small-world phenomena
Most complex networks (including random networks) have the small-world property, 
which means that there are relatively short paths between any pair of nodes128. This 
observation means that most proteins (or metabolites) are only a few interactions (or 
reactions) from any other proteins (metabolites)11,12,34. Therefore, perturbing the state 
of a given node can affect the activity of most nodes in their vicinity as well as of the 
behaviour of the network itself.

Motifs
Some subgraphs (a group of nodes that link to each other, forming a small 
subnetwork within a network) in biological networks appear more (or less) frequently 
than expected given the network’s degree distribution. Such subgraphs are often 
called motifs129, and they are likely to be associated with some optimized biological 
function (for example, negative feedback loops, positive feedforward loops, bifans  
or oscillators).

Betweenness centrality
Nodes with a high betweenness centrality (a measure of the number of shortest paths 
that go through each node) are often called bottlenecks. In networks with directed 
edges, such as regulatory networks, bottlenecks tend to correlate with essentiality130.
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Degree
The degree of a node is the 
number of links that connect 
to it. The degree of a protein 
could represent the number of 
proteins with which it interacts 
with, whereas the degree of a 
disease may represent the 
number of other diseases  
that are associated with the 
same gene or that have a 
common phenotype.

Module (or community)
A dense subgraph on the 
network that often represents 
a set of nodes that have a joint 
role. In biology, a module could 
correspond to a group of 
molecules that interact with 
each other to achieve some 
common function.

of a particular functional module51, intimating that a 
functional module is also a disease module. However, 
several unique characteristics of disease modules are 
important to bear in mind. First, a disease module may 
not be identical to, but is likely to overlap with, the top-
ological and/or functional modules. Second, a disease 
module is defined in relation to a particular disease and, 
accordingly, each disease has its own unique module. 
Last, a gene, protein or metabolite can be implicated in 
several disease modules, which means that different dis-
ease modules can overlap. These characteristics aid the 
disease module identification process, an important step 
of network medicine (FIG. 3).

The emergence of a disease is therefore viewed as a 
combinatorial problem in which many different defects 
and perturbations result in a similar disease phenotype, 
provided that they alter the activity of the disease mod-
ule. Such combinatorial disease mechanisms are well 
documented in cancer52, but the utility of the disease 
module hypothesis extends beyond polygenic diseases 
and is important even in some monogenic diseases. For 
example, sickle cell disease, a classic Mendelian disorder, 
is caused by a single point mutation at position 6 of the 
β-chain of haemoglobin. Still, this simple biochemical 
phenotype and its corresponding monogenotype do not 
yield a single pathophenotype: individuals with sickle 
cell disease can present with painful crises, osteonecro-
sis, acute chest syndrome, stroke, profound anaemia or 
mild asymptomatic anaemia. Thus, the underlying dis-
ease module is likely to include all disease-modifying 
genes (for example, haemoglobin F) that mediate vari-
ous epigenetic, transcriptional and post-translational 
phenomena. An important step of network-based 
approaches to disease is, therefore, to identify the dis-
ease module for the pathophenotype of interest, which, 
in turn, can guide further experimental work towards 
uncovering the disease mechanism, predicting disease 
genes and influencing drug development.

Predicting disease genes
Disease-associated genes have generally been identified 
using linkage mapping or, more recently, genome-wide 
association (GWA) studies53. Both methodologies can 
suggest large numbers of disease-gene candidates, but 
identifying the particular gene and the causal muta-
tion remains difficult. Recently, a series of increasingly 
sophisticated network-based tools have been devel-
oped to predict potential disease genes; these tools can 
be loosely grouped into three categories, as discussed  
below (FIG. 4).

Linkage methods. These methods assume that the direct 
interaction partners of a disease protein are likely to 
be associated with the same disease phenotype45,54–56. 
Indeed, for one disease locus, the set of genes within 
the locus whose products interacted with a known 
disease protein were shown to be tenfold enriched in 
true disease-causing genes45. By also considering cel-
lular localization, this approach led to a 1,000-fold 
enrichment over a random selection. On this basis, the 
authors predicted and confirmed the involvement of 
Janus kinase 3 (JAK3) in severe combined immunode-
ficiency syndrome owing to its interaction with known 
disease-associated proteins.

Disease module-based methods. A second set of meth-
ods assumes that all cellular components that belong 
to the same topological, functional or disease module  
have a high likelihood of being involved in the same 
disease57,58. These methods start with identifying  
the disease modules and inspecting their members as 
potential disease genes. Disease modules can be identi-
fied on the basis of currently available data using bio-
informatics approaches (FIG. 3). Briefly, this strategy 
involves constructing the interactome in the tissue and 
cell line of interest and identifying a subnetwork, or dis-
ease module, that contains most of the disease-associated 
genes. Disease modules are then validated by, for exam-
ple, showing that the genes in a module have related  
functions or have correlated expression patterns.

Variants of this methodology have been applied to 
a wide range of diseases and pathophenotypes, includ-
ing several different types of cancer59–66, neurological  
diseases67–69, cardiovascular diseases68,70, systemic inflam-
mation71,72, obesity73–75, asthma76, type 2 diabetes77 and 
chronic fatigue syndrome78. For example, Taylor et al.66 
identified disease-associated protein interaction modules 
for adenocarcinoma of the breast, providing useful indi-
cators for predicting breast cancer outcome. Similarly, 
Chen et al.73 identified subnetworks in liver and adipose 
tissues that contain genes for which variants associated 
with obesity and diabetes have been identified. The 
results confirmed a previously proposed connection 
between obesity and a macrophage-enriched metabolic 
subnetwork, validating three previously unknown genes, 
lipoprotein lipase (Lpl), β-lactamase (Lactb) and protein 
phosphatase, Mg2+/Mn2+ dependent, 1L (Ppm1l), as obes-
ity genes in transgenic mice. The disease module-based 
approach has also been useful in exploring pathogen-
induced phenotypes79–81 (N.G. et al., unpublished data). 

Figure 1 | Disease and essential genes in the interactome. a | Of the approximately 
25,000 human genes, 2,418 are associated with specific diseases. The figure shows the 
overlap between the 1,777 disease-associated genes that were known42 in 2007 and 
the 1,665 genes that are in utero essential, that is, their absence is associated with 
embryonic lethality. b | Schematic diagram of the differences between essential and 
non-essential disease genes. Non-essential disease genes (shown as blue nodes) are 
found to segregate at the network periphery, whereas in utero essential genes (shown 
as red nodes) tend to be at the functional centre (encoding hubs and expressed in 
many tissues) of the interactome. Part a is reproduced, with permission, from REF. 42 

 (2007) National Academy of Sciences.
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Comorbidity
Comorbidity implies the 
presence of one or more 
disorders (or diseases) in 
addition to a primary disease 
or disorder that the patient 
has. Comorbidity may hide 
causal effects, when one 
disease enhances the 
emergence of some other 
disease, such as the 
much-studied comorbidity 
between diabetes and obesity.

An area that is ripe for network-based approaches is the 
bacterial microbiome (and other metagenomes) and its 
relationship to human disease82.

Often the rate-limiting step in mapping a disease 
module is the low coverage of the available cellular 
interaction maps in the vicinity of the known disease 
components, which means that additional experimen-
tal efforts are needed to identify relevant interactions. 
This approach was successfully applied to several dis-
eases, including Huntington’s disease83, spinocerebellar 
ataxia84, breast cancer85 and schizophrenia86. For exam-
ple, starting from 23 known ataxia-causing genes, Lim 
et al.84 used yeast two-hybrid assays to map their inter-
actions with other human proteins; the interactions of 
this second group of proteins were then used to build a 
dense subnetwork that was two degrees removed from 
the known ataxia genes. A member of the predicted 
ataxia disease module, puratrophin 1, a common bind-
ing partner to many of the known ataxia genes, which 
were not previously recognized as having any commo-
nality, was later shown to lead to ataxia-like phenotypes 
in mice following its deletion87.

Diffusion-based methods. A final group of methods aims 
to identify the pathways that are closest to the known 
disease genes. In these algorithms, ‘random walkers’ are 
‘released’ from the protein products of the known dis-
ease genes, and they are then allowed to diffuse along the 
links of the interactome, moving to any neighbouring 
node with equal probability. In this way, one can identify 
the nodes and links that are closest to the known disease 
genes, as they will be those that are most often visited by 
the random walkers. Proteins that interact with several 
disease proteins will gain a high probabilistic weight, as 
will those that may not directly interact with any disease 

proteins but are in close network proximity to them. This 
approach helps to prioritize proteins and interactions on 
the basis of their potential involvement in the particular 
disease. Variants of this methodology have been applied 
to detecting disease genes related to a wide range of 
diseases, from diabetes mellitus to prostate cancer and 
Alzheimer’s disease88,89.

Each of these three methodologies exploits, to an 
increasing degree, the topological and functional infor-
mation that is encoded by the interactome. The link-
age method involves only pairwise linkage information 
(local hypothesis; BOX 3), whereas the disease module-
based method exploits the full network neighbourhood 
of disease genes (disease module hypothesis, BOX 3). 
Finally, diffusion-based methods use the information 
that is encoded in the full network topology as well 
as the placement of the known disease genes, thereby 
simultaneously exploiting both topological and func-
tional modularity (together with the parsimony princi-
ple; BOX 3). It is not surprising, therefore, that a recent 
comparative study found that, on the same data set, 
linkage-based methods have the least predictive power 
and diffusion-based methods offer the best predictive 
performance57.

In summary, the evidence of the nonrandom place-
ment of disease genes in the interactome has opened 
a series of opportunities for disease gene predictions. 
The value of these tools is expected to increase with the 
wealth of disease gene candidates provided by GWA 
studies and full-genome sequencing. Indeed, these tools 
help us to narrow the vast search space offered by the 
interactome, thus aiding our search for disease mecha-
nisms and, eventually, the development of rational,  
individualized therapies and potential cures.

Human diseasome
The highly interconnected nature of the interactome 
means that, at the molecular level, it is difficult to con-
sider diseases as being consistently independent of one 
another. Indeed, different disease modules can overlap, 
so that perturbations caused by one disease can affect 
other disease modules. The systematic mapping of such 
network-based dependencies between pathopheno-
types and their disease modules has culminated in the 
concept of the diseasome42, which represents disease 
maps whose nodes are diseases and whose links rep-
resent various molecular relationships between the  
disease-associated cellular components. Uncovering 
such links between diseases not only helps us under-
stand how different phenotypes, often addressed by 
different medical subdisciplines, are linked at the molec-
ular level, but can also help us to comprehend why cer-
tain groups of diseases arise together. The comorbidity  
of conditions that are culled from the diseasome offers 
insights that may yield new approaches to disease pre-
vention, diagnosis and treatment. Diseasome-based 
approaches could also aid drug discovery, in particu-
lar when it comes to the use of approved drugs to treat 
molecularly linked diseases. Here, we review the con-
struction of such disease maps and the implications of 
the observed disease associations.

 Box 3 | Hypotheses of network medicine

Network medicine is based on a series of widely used (and often unspoken) 
hypotheses and organizing principles that link network structure to biological 
function and disease. Next, we summarize some of the most frequently used 
hypotheses, and they are discussed in more detail in the main text.

Hubs
Non-essential disease genes (representing most known disease genes) tend to avoid 
hubs and segregate at the functional periphery of the interactome. In utero essential 
genes tend to associated with hubs.

Local hypothesis
Proteins involved in the same disease have an increased tendency to interact with 
each other.

Corollary of the local hypothesis
Mutations in interacting proteins often lead to similar disease phenotypes.

Disease module hypothesis
Cellular components associated with a specific disease phenotype show a tendency 
to cluster in the same network neighbourhood.

Network parsimony principle
Causal molecular pathways often coincide with the shortest molecular paths 
between known disease-associated components.

Shared components hypothesis
Diseases that share disease-associated cellular components (genes, proteins, 
metabolites or microRNAs) show phenotypic similarity and comorbidity.
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Edgetic
Edgetic perturbations denote 
mutations that do not result  
in the complete loss of a  
gene product, but affect one 
or several interactions (and 
thus functions) of a protein. 
From a network perspective, 
an edgetic perturbation 
removes one or several links, 
but leaves the other links  
and the node unaffected.

Shared gene hypothesis and the human disease network. 
The linkage of a gene to different disease pathopheno-
types often indicates that these diseases have a common 
genetic origin. Motivated by this hypothesis, Goh et al.42 
used the gene–disease associations that are collected 
in the OMIM database to build a network of diseases 
that are linked if they share one or more genes. In the 
obtained human disease network (HDN), 867 of 1,284 
diseases with an associated gene are connected to at least 
one other disease, and 516 of them belong to a single 
disease cluster (FIG. 5). The clustering of nodes of similar 
colour in FIG. 5, denoting the disease class, reflects the 
fact that similar pathophenotypes have a higher likeli-
hood of sharing genes than do pathophenotypes that 
belong to different disease classes. For example, cancers 
form a tightly interconnected and easily detectable clus-
ter, which is held together by a small group of genes that 
are associated with multiple cancers.

To determine whether the sharing of genes has con-
sequences for disease occurrence in populations, the 
comorbidity between linked disease pairs has been 
examined90 (FIG. 5). This analysis indicates that a patient 
is twice as likely to develop a particular disease if that 
disease shares a gene with the patient’s primary disease. 
But many disease pairs that share genes do not show sig-
nificant comorbidity. One explanation is that different 
mutations in the same gene can have different effects on 
the gene product, and therefore different pathological 
consequences91 that are organ and context dependent. 
Such ‘edgetic’ alleles affect a specific subset of links in 
the interactome92. Consistent with this view, disease 
pairs that are associated with mutations that affect 

the same functional domain of a protein show higher 
comorbidity than do disease pairs with mutations that 
occur in different functional domains90 (FIG. 5).

Shared metabolic pathway hypothesis and the meta-
bolic disease network. An enzymatic defect that affects 
the flux of one reaction can potentially affect the 
fluxes of all downstream reactions in the same path-
way, leading to disease phenotypes that are normally 
associated with these downstream reactions. Thus,  
for metabolic diseases, links that are induced by shared 
metabolic pathways are expected to be more relevant 
than are links based on shared genes. In support of 
this hypothesis, Lee et al.93 constructed a metabolic 
disease network (MDN) in which two disorders are 
connected if the enzymes associated with them cata-
lyse adjacent reactions (FIG. 5b). The visually apparent 
clustering of the MDN mirrors distinct metabolic path-
ways. For example, purine metabolism consists of 62 
reactions associated with 33 diseases, including nucle-
oside phosphorylase deficiency and congenital dys-
erythropoietic anaemia, which form a visually distinct 
cluster. Comorbidity analysis confirms the functional 
relevance of metabolic coupling: disease pairs that are 
linked in the MDN have a 1.8-fold increased comor-
bidity compared to disease pairs that are not linked 
metabolically93. Comorbidity is even more pronounced 
if the fluxes of the reactions that are catalysed by the 
respective disease genes are themselves coupled; that 
is, changes in one flux induce significant changes in 
the other flux, even if the corresponding reactions are 
not adjacent.

Figure 2 | Disease modules. Schematic diagram of the three modularity concepts that are discussed in this Review.  
a | Topological modules correspond to locally dense neighbourhoods of the interactome, such that the nodes of  
the module show a higher tendency to interact with each other than with nodes outside the module. As such, 
topological modules represent a pure network property. b | Functional modules correspond to network neighbourhoods 
in which there is a statistically significant segregation of nodes of related function. Thus, a functional module requires us 
to define some nodal characteristics (shown as grey nodes) and relies on the hypothesis that nodes that are involved in 
closely related cellular functions tend to interact with each other and are therefore located in the same network 
neighbourhood. c | A disease module represents a group of nodes whose perturbation (mutations, deletions, copy 
number variations or expression changes) can be linked to a particular disease phenotype, shown as red nodes. The tacit 
assumption in network medicine is that the topological, functional and disease modules overlap, so that functional 
modules correspond to topological modules and a disease can be viewed as the breakdown of a functional module.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 12 | JANUARY 2011 | 61

© 2011 Macmillan Publishers Limited. All rights reserved



Shared microRNA hypothesis. Prompted by the increas-
ing evidence of the role of miRNAs in human disease, Lu 
et al.94 connected disease pairs with associated genes that 
are targeted by at least one common miRNA molecule. 
The obtained miRNA-based disease network shows a 
disease-class-based segregation; for example, cancers 
share similar associations at the miRNA level, leading 
to a distinct cancer cluster that differs from, for example, 
the cluster associated with cardiovascular diseases.

Phenotypic disease networks. One can also link disease 
pairs on the basis of the directly observed comorbidity 
between them, thereby obtaining a phenotypic disease 
network (PDN). For example, Rzhetsky et al.95 inferred 
the comorbidity links between 161 disorders from the 
disease history of 1.5 million patients at the Columbia 
University Medical Center, New York, USA, and Hidalgo 
et al.96 built a network involving 657 diseases from 

the disease history of more than 30 million Medicare 
patients. In these maps, two diseases are connected if their 
comorbidity exceeds a predefined threshold. The PDN 
is blind to the mechanism that underlies the observed 
comorbidity, which may be rooted in molecular- 
level dependencies (as seen for HDNs, MDNs or 
miRNA-based disease networks) or in environmental 
or treatment-related perturbations of the network. Still, 
PDNs capture disease progression, as patients tend to 
develop diseases in the network vicinity of diseases 
that they have already had96. Furthermore, patients 
who are diagnosed with diseases with more links in the 
PDN show a higher mortality than do those who are 
diagnosed with diseases that are less well connected96. 
Another use of phenotypic information was suggested 
by Van Driel et al.97, who used text mining to assign to 
more than 5,000 human phenotypes in the OMIM data-
base a string of phenotypic features from the medical 

Figure 3 | Identifying and validating disease modules. For any specific disease, the identification and validation of 
disease modules consists of several steps. a | Interactome reconstruction merges the most up-to-date information 
on protein–protein interactions, co-complex memberships, regulatory interactions and metabolic network maps 
(BOX 1) in the tissue and cell line of interest. These networks are occasionally augmented with phenotypic links, such 
as co-expression-based relationships68,73. We feel that such phenotypic measures are best used later, to test the 
functional homogeneity of the predicted disease module. b | Disease gene (seed) identification collects the known 
disease-associated genes obtained from linkage analysis, genome-wide association (GWA) studies or other sources, 
which serve as the seed of the disease module. c | In disease module identification the seed genes are placed on the 
interactome, with the aim of identifying a subnetwork that contains most of the disease-associated components, 
exploiting both the functional and topological modularity of the network. If such statistically significant 
agglomeration is detected, then one can use a combination of clustering tools47–50 to identify the functionally and 
topologically compact subgraph that contains the most disease components, which thus represents the potential 
disease module. The closer the phenotypic manifestations of the two diseases (in terms of, for example, organ 
system, symptoms or drug response), the more significant is the expected overlap between the modules that are 
associated with two diseases. d | Pathway identification can be used in instances in which the number of 
components contained in the ascertained disease module is so large that it cannot serve as a tractable starting point 
for further experimental work. In these cases it may be necessary to identify the specific molecular pathways whose 
disruption may be responsible for the disease phenotype. One typically uses the network parsimony principle (BOX 3) 
to select the most likely disease pathways, assuming that causal pathways are the shortest paths connecting the 
known disease components. e | During validation disease modules are tested for their functional and dynamic 
homogeneity. The nature of the validation depends on the tools and data that are available to the investigator; gene 
expression data can validate the dynamical integrity of the disease module, and GWA studies can be used to test  
the potential links between the SNPs of the predicted cellular components and the disease phenotype. Finally, the 
predicted disease genes and pathways (which also serve as potential drug targets) are tested using the available 
molecular biology tools and animal models.
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subject heading vocabulary. The overlap of their phe-
notypic descriptions was used to link various diseases, 
and the authors found that phenotypic similarity cor-
relates positively with the molecular signatures of two 
linked diseases, from relatedness at the level of protein 
sequence to protein motifs and direct protein–protein 
interactions between the disease-associated proteins.

Most efforts have focused on the role of a single 
molecular or phenotypic measure to capture disease–
disease relationships (such as shared genes or metabo-
lites), but a comprehensive understanding requires us 
to inspect multiple sources of evidence, from shared 
genes to protein–protein interaction-based relation-
ships, shared environmental factors, common treat-
ments, affected tissues and organs22,23, and phenotypic 
manifestations. In line with such integrated approaches, 
Suthram et al.98 built a disease network by linking two 
diseases for which the same modules were activated in 
the specific disease states, and Liu et al.99 linked diseases 
with common environmental influences. Although 
efforts to understand all causal links between diseases 
are still in their infancy, they will be essential for a deeper 
understanding of human disease.

Applying network-based knowledge of disease
Network pharmacology. The first step of rational drug 
design is to understand the cellular dysfunction that  
is caused by a disease. By definition, this dysfunction is  
limited to the disease module, which means that one can 
reduce the search for therapeutic agents to those that 
induce detectable changes in module activity. Another 
application of network pharmacology addresses the fact 
that, owing to the often unknown interactions between 
drug targets and other cellular components, drugs whose 
efficacy was predicted by specific target-binding experi-
ments may not have the same effect in vivo. That is, a 
drug might have more than one binding partner such 
that its efficacy is determined by its multiple interac-
tions, leading to unwanted side effects100–102. Although 
network-based approaches represent a relatively recent 

trend in drug discovery, that fact that drug development 
is clearly affected by intricate network effects103 suggests 
that network pharmacology104 will become an essential 
component of drug-development strategies. Indeed, the 
network concepts discussed above have already found 
their way into drug discovery studies, from attempts to 
target the hubs with drugs to using modules to identify 
potential drug targets105–107.

The promise of network-based approaches in drug 
discovery is best illustrated in the area of bacterial and 
human metabolism. Given the relative accuracy of meta-
bolic maps (BOX 1) and the ability to predict flux changes 
that are induced by drug-altered enzymatic activity in 
bacteria using flux balance analysis108 and other flux-
based methods109, the metabolic impact of a hypotheti-
cal enzyme-blocking drug can be explored in silico. This 
capability has recently led to the identification and 
testing of potential new antibacterial agents and the 
complex system-based responses that they produce110.  
Furthermore, the coupled nature of metabolic fluxes 
presents the possibility of rescuing a lost metabolic 
function through inhibiting additional enzymes, which 
would be selected in order to re-route metabolic activ-
ity to compensate for the original loss of function — an 
intriguing alternative to gene therapy111.

Single-target drugs may, perhaps, correct some dys-
functional aspects of the disease module, but they could 
also alter the activity of molecules that are situated in 
the neighbourhood of the disease module, leading to 
detectable side effects100–102. This network-based view of 
drug action implies that most disease phenotypes are 
difficult to reverse through the use of a single ‘magic 
bullet’, that is, an intervention that affects a single node 
in the network112. Increasing attention is therefore being 
given to therapies that involve multiple targets, which 
may be more effective in reversing the disease phenotype 
than are single drugs113. The efficacy of this approach has 
been demonstrated by combinatorial therapies for AIDS, 
cancer and depression, raising an important question: 
can one systematically identify multiple drug targets that 

Figure 4 | Identifying disease gene candidates. a | Linkage methods. Genes located in the linkage interval of a 
disease whose protein products (labelled P1, P2, and so on) interact with a known disease-associated protein are 
considered likely candidate disease genes45,57. b | Disease module-based methods. Clustering or graph partitioning 
helps us to uncover functional and potential disease modules in the interactome. The members of such modules are 
considered candidate disease genes57,131. c | Diffusion-based methods. Starting from proteins that are known to be 
associated with a disease, a random walker visits each node in the interactome with a certain probability88,89. The 
outcome of this algorithm is a disease-association score that is assigned to each protein, that is, the likelihood that a 
particular protein is associated with the disease. PPI, protein–protein interaction.
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have an optimal impact on the disease phenotype? This 
is an archetypical network problem, and it has led to the 
development of methods to identify optimal drug combi-
nations, starting either from the metabolic network114,115 
or from the bipartite network that links compounds to 
their drug-response phenotypes116. Such research has led 
to potentially safer multi-target combinations for inflam-
matory conditions and to the optimization of anticancer 
drug combinations114–116.

Equally important, drug target networks117,118 that 
link approved or experimental drugs to their protein tar-
gets have helped researches to organize and visualize the 
considerable knowledge that exists about the interplay 
between diseases and drugs. Its analysis demonstrated 
that many drugs are palliative — that is, they do not tar-
get the actual disease-associated proteins but proteins in 
their network neighbourhood117.

Disease classification. Contemporary approaches to the 
classification of human disease are based on observa-
tional correlations between pathological analysis of the 
patient and existing knowledge of clinical syndromes. 
Modern molecular diagnostic tools have shown the 
shortcomings of this methodology, reflecting both a 
lack of sensitivity in identifying preclinical disease and 
a lack of specificity in defining disease unequivocally. 
For example, hypertrophic cardiomyopathy, an inher-
ited form of heart failure, is caused by a number of 
mutations in various sarcomeric proteins; however, the 
clinical phenotype, as well as the anatomical and func-
tional pathophenotypes (assessed by echocardiographic 
assessment), are essentially indistinguishable from  
one another119,120.

Current disease classification also tends to neglect 
the interconnected nature of many diseases. This fail-
ure is partly a response to the focused nature of medi-
cal training, as well as the reductionist paradigm that 

has driven medical diagnosis in the modern era. In an 
effort to correct this shortcoming, we recently pro-
posed a systems-based network framework for defin-
ing human disease121. In this paradigm, the clinical 
pathophenotype is the systems-driven consequence 
of a series of linked networks that incorporate several 
components. First, there is the primary disease-causing  
gene, which contains a mutation — for example, the 
sickle cell mutation in the sixth amino acid of the hae-
moglobin β-chain. The mutated gene is a node in the 
interactome, and it interacts with a host of disease-
modifying genes, including those that control interme-
diate pathophenotypes (or endopathophenotypes) that 
are common to all diseases and their network-based 
determinants. Intermediate pathophenotypes include 
inflammation and other immune responses, thrombo-
sis or haemorrhage, fibrosis, aberrant cell proliferation, 
apoptosis or necrosis. In addition, there are environ-
mental (and behavioural) determinants of disease, 
including both those that modulate gene expression 
at the transcriptional or epigenetic levels and those 
that cause post-translational modification of the pro-
teome, and their influence on functional (protein, cell 
or organ) phenotype. These subnetwork determinants 
of the disease together give rise to clinical pheno-
types that are highly individual, not only in complex 
diseases but also in ‘simple’ Mendelian conditions121.  
This framework exposes the challenges of a network-
based disease classification: many of the factors affect-
ing the disease module remain unknown or poorly 
mapped. Still, a network-based disease classification 
not only uncovers the gaps in our experimental and 
theoretical knowledge, but also demonstrates that only 
an integrated programme has the potential to provide 
a useful framework, by defining disease susceptibility, 
predicting disease outcome and identifying tailored 
therapeutic strategies.

Figure 5 | Disease networks. A | An example of a human disease network (HDN), in which nodes represent diseases. 
The large panel shows the giant cluster of the obtained disease network (Aa). Small clusters of isolated diseases are 
not shown42. Two diseases are linked if they share one or several disease-associated genes, as shown in part Ab, 
involving breast cancer and bone and cartilage cancer90. The node colours reflect the class of the diseases that 
correspond to that node. Cancers appear as blue nodes and neurological diseases appear as red nodes. The node 
sizes correlate with the number of genes that are known to be associated with the corresponding disease (after 
REF. 42). Part Ac shows the comorbidity between diseases linked in the HDN as measured by the logarithm of relative 
risk, indicating that, if the disease-causing mutations affect the same module of the shared disease protein, then the 
comorbidity is higher90. B | A metabolic disease network (part Ba, with an example shown part Bb), which links two 
diseases if they are both associated with enzymes and if these enzymes catalyse reactions that share a metabolite 
(after REF. 93). Part Bc shows that comorbidity between metabolically linked diseases is higher than between those 
that are not connected, and diseases whose enzymes catalyse reactions that are coupled with each other at the flux 
level show even higher comorbidity. AR, androgen receptor; ATM, ataxia telangiectasia mutated; BRCA, breast 
cancer associated; BARD1, BRCA1 associated RING domain 1; BIGG, Biochemical Genetic and Genomics 
knowledgebase; BPGM, 2,3-bisphosphoglycerate mutase; CHEK2, CHK2 checkpoint homologue; CSMF, 
chondrosarcoma, extraskeletal myxoid, fused to EWS (also known as NR4A3); ENO3, enolase 3 (beta, muscle); 
EWSR1, Ewing sarcoma breakpoint region 1; ESR1, oestrogen receptor 1; EXT1, exostosin 1; HARP, hypoprebetalipo-
proteinaemia, acanthocytosis, retinitis pigmentosa and pallidal degeneration; HELLP, haemolytic anaemia, elevated 
liver enzymes and low platelet count; KEGG, Kyoto Encyclopedia of Genes and Genomes; PGAM2, phosphoglycerate 
mutase 2 (muscle); PHB, prohibitin; RB1, retinoblastoma 1; TAF15, TATA box-binding protein (TBP)-associated factor, 
RNA polymerase II; TSG101, tumour-susceptibility gene 101; TP53, tumour protein 53. Part Aa is reproduced, with 
permission, from REF. 42  (2007) National Academy of Sciences. Part Ab is reproduced, with permission, from 
REF. 90  (2009) Macmillan Publishers Ltd. All rights reserved. Part Bb is reproduced, with permission, from REF. 93  
(2008) National Academy of Sciences.
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Conclusions
In summary, similar to an automotive technician’s inabil-
ity to fix a car’s electrical problem without an accurate 
assembly and wiring diagram, a comprehensive under-
standing of most diseases requires a map of the cell’s 
intricate wiring diagram, the breakdown of which is 
ultimately responsible for the emergence of a particular 
disease phenotype. Network medicine seeks to offer this 
understanding.

Yet, progress towards a reliable network-based 
approach to disease is currently limited by the incom-
pleteness of the available interactome maps and the limi-
tations of the existing tools to explore the role of networks 
in disease. For example, investigators are forced to apply 
traditional statistical tools to network data, assuming that 
the quantities of interest follow a normal distribution. 
However, they do not — everything from degree distri-
butions to metabolite concentrations are known to be ‘fat 
tailed’. Another assumption of current statistical tools is 
that quantities characterizing various activity patterns 
(for example, molecular concentrations and expression 
patterns) are independent variables. Again, they are not 
— most activity patterns in the cell are correlated. Thus, 
there is a real need to develop statistical tools that are reli-
able in the context of the interconnected environment of 
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